Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
IEEE Sensors Journal ; 23(1):68-87, 2023.
Article in English | Scopus | ID: covidwho-2240089

ABSTRACT

Management of crowd information in public transportation (PT) systems is crucial, both to foster sustainable mobility, by increasing the user's comfort and satisfaction during normal operation, as well as to cope with emergency situations, such as pandemic crises, as recently experienced with coronavirus disease (COVID-19) limitations. This article presents a taxonomy and review of sensing technologies based on the Internet of Things (IoT) for real-time crowd analysis, which can be adopted in the different segments of the PT system (buses/trams/trains, railway/metro stations, and bus/tram stops). To discuss such technologies in a clear systematic perspective, we introduce a reference architecture for crowd management, which employs modern information and communication technologies (ICTs) in order to: 1) monitor and predict crowding events;2) implement crowd-aware policies for real-time and adaptive operation control in intelligent transportation systems (ITSs);and 3) inform in real time the users of the crowding status of the PT system, by means of electronic displays installed inside vehicles or at bus/tram stops/stations and/or by mobile transport applications. It is envisioned that the innovative crowd management functionalities enabled by ICT/IoT sensing technologies can be incrementally implemented as an add-on to state-of-the-art ITS platforms, which are already in use by major PT companies operating in urban areas. Moreover, it is argued that, in this new framework, additional services can be delivered to the passengers, such as online ticketing, vehicle access control and reservation in severely crowded situations, and evolved crowd-aware route planning. © 2001-2012 IEEE.

2.
IEEE Sensors Journal ; : 1-1, 2022.
Article in English | Scopus | ID: covidwho-2191999

ABSTRACT

Management of crowd information in public transportation (PT) systems is crucial, both to foster sustainable mobility, by increasing the user’s comfort and satisfaction during normal operation, as well as to cope with emergency situations, such as pandemic crises, as recently experienced with COVID-19 limitations. This paper presents a taxonomy and review of sensing technologies based on Internet of Things (IoT) for real-time crowd analysis, which can be adopted in the different segments of the PT system (buses/trams/trains, railway/metro stations, and bus/tram stops). To discuss such technologies in a clear systematic perspective, we introduce a reference architecture for crowd management, which employs modern information and communication technologies (ICT) in order to: (i) monitor and predict crowding events;(ii) implement crowd-aware policies for real-time and adaptive operation control in intelligent transportation systems (ITSs);(iii) inform in real-time the users of the crowding status of the PT system, by means of electronic displays installed inside vehicles or at bus/tram stops/stations, and/or by mobile transport applications. It is envisioned that the innovative crowd management functionalities enabled by ICT/IoT sensing technologies can be incrementally implemented as an add-on to state-of-the-art ITS platforms, which are already in use by major PT companies operating in urban areas. Moreover, it is argued that, in this new framework, additional services can be delivered to the passengers, such as, e.g., on-line ticketing, vehicle access control and reservation in severely crowded situations, and evolved crowd-aware route planning. Author

3.
Computers, Materials, & Continua ; 73(3):5845-5862, 2022.
Article in English | ProQuest Central | ID: covidwho-1975810

ABSTRACT

The number of accidents in the campus of Suranaree University of Technology (SUT) has increased due to increasing number of personal vehicles. In this paper, we focus on the development of public transportation system using Intelligent Transportation System (ITS) along with the limitation of personal vehicles using sharing economy model. The SUT Smart Transit is utilized as a major public transportation system, while MoreSai@SUT (electric motorcycle services) is a minor public transportation system in this work. They are called Multi-Mode Transportation system as a combination. Moreover, a Vehicle to Network (V2N) is used for developing the Multi-Mode Transportation system in the campus. Due to equipping vehicles with On Board Unit (OBU) and 4G LTE modules, the real time speed and locations are transmitted to the cloud. The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival (ETA). In terms of vehicle classifications and counts, we deployed CCTV cameras, and the recorded videos are analyzed by using You Only Look Once (YOLO) algorithm. The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed. Contrary to the existing researches, the proposed system is implemented in the real environment. The final results unveil the attractiveness and satisfaction of users. Also, due to the proposed system, the CO2 gas gets reduced when Multi-Mode Transportation is implemented practically in the campus.

SELECTION OF CITATIONS
SEARCH DETAIL